Войти
Автомобильный портал
  • Каким образом и в чем измеряется плотность?
  • Рейтинг самых экономичных автомобилей по расходу топлива
  • Нанесение Ударов на Короткой Дистанции – Ближний Бой
  • Из чего делают топливо. Как получают бензин. Октановое число и детонационная стойкость
  • Как заменить лобовое стекло по каско Каско решения ущерб камень в лобовое стекло
  • История авто - Porsche Порше производитель какая страна машин
  • Балансировка вращающихся деталей и сборочных единиц. Балансировка деталей Динамическая балансировка колес чем отличается от статистической

    Балансировка вращающихся деталей и сборочных единиц. Балансировка деталей Динамическая балансировка колес чем отличается от статистической

    Для уравновешивания любой вращающейся детали необходимо, чтобы ее центр тяжести лежал на оси вращения, а центробежные моменты инерции были равны нулю. Несовпадение центра тяжести детали с осью вращения принято называть статической неурав­новешенностью, а неравенство нулю центробежных моментов инерции - динамической неуравновешенностью.

    4.1 Статическая балансировка деталей

    Статическая неуравновешенность легко обнаруживается при ус­тановке детали опорными шейками на параллели или ролики. Обычно статической балансировке подвергаются детали, у которых диаметральные размеры намного превышают длину по оси враще­ния (маховики, диски, шкивы, рабочие колеса и т.п.), так как в этом случае динамической составляющей можно пренебречь.

    При статической балансировке установкой пробных грузиков определяют места и величину дисбаланса. Неуравновешенность устраняют удалением эквивалентного количества материала с де­тали или установкой корректирующих грузов. Излишний материал у массивных деталей (маховики) удаляют сверлением или фрезеро­ванием, а у тонкостенных (шкивы, диски, роторы) - эксцентриче­ским точением или шлифованием.

    После устранения дисбаланса производят повторную (контроль­ную) балансировку. При превышении остаточного дисбаланса до­пустимой по техническим требованиям величины балансировку повторяют

    4.2 Динамическая балансировка деталей

    Динамической балансировке подвергают работающие при высоких скоростях вращающиеся детали или узлы в сборе, у кото­рых длина по оси вращения превышает диаметральные размеры (например, бильные барабаны зерноуборочных комбайнов или ко­ ленчатые валы двигателей).

    Даже в статически уравновешенной детали может быть неравномерное распределение массы по длине относительно оси, что при значительной частоте вращения создает момент центробежных сил на плече L (см. рисунок 1) и, следовательно, дополнительные на­грузки на опоры и вибрацию.

    Неуравновешенность выявляют на специальных балансировоч­ных машинах при вращении детали на рабочих скоростях и устра­няют, как и при статической балансировке, только в двух или более плоскостях коррекции, выбираемых в зависимости от конструкции детали.

    Динамическая балансировка исключает необходимость выпол­нения балансировки статической.

    Для выполнения динамической балансировки необходимы ус­тановки, обеспечивающие вращение детали, контроль действую­щих при этом на опоры центробежных сил неуравновешенных масс или моментов этих сил, а также выявление плоскости расположе­ния неуравновешенных масс.

    Рисунок 1 Приведение действующих на ротор ротор, к двум плоскостям коррекции сил

    Этим обстоятельством как раз и пользуются при динамиче­ской балансировке деталей. Для балансировки выбирают на детали две плоскости, перпендикулярные к оси вращения и удобные для установки уравновешивающих грузов или удаления части материа­ла детали - так называемые плоскости коррекции. Станок на­страивают так, чтобы можно было определить место и величину грузов, которые следует добавить (или удалить) в каждой из плос­костей для полного уравновешивания детали.

    Динамическую неуравновешенность выявляют на баланси­ровочных машинах. В ремонтном производстве наибольшее рас­пространение получили электрические балансировочные машины с упругими опорами (см. рисунок 2).

    Неуравновешенные массы детали вызывают механические колебания подвижных опор (1). С помощью датчиков (2) эти меха­нические колебания преобразуются в электрические. Причем на­пряжение электрического тока в датчике прямо пропорционально величине механического колебания опоры, т.е. неуравновешенно­сти. В измерительном устройстве (3) ток усиливается и прочитыва­ется на миллиамперметре (4) в виде показаний дисбаланса.

    Рисунок 2 Схема машины для динамической балансировки коленчатых валов:

    1 - подвижные опоры (люльки); 2 - датчик колебаний; 3 ­блок усиления и измерения; 4 - миллиамперметр; 5 - лампа стробо­скопа; 6 - электродвигатель; 7 - лимб стробоскопа; 8 - лимб отсчета угла поворота вала.

    Угловое расположение неуравновешенных масс определяет­ся стробоскопическим устройством. Стробоскопическая лампа управляется напряжением датчика колебаний, причем каждый раз, когда вектор неуравновешенных масс проходит горизонтальную плоскость с лицевой стороны станка, лампа (5) вспыхивает и от­свечивает определенную цифру на лимбе стробоскопа (8). Из-за стробоскопического эффекта цифры на лимбе кажутся неподвиж­ными.

    Главным источником вибрации агрегатов является неуравновешенность роторов , которая всегда имеет место, из-за того, что ось вращения и ось инерции, проходящая через центр масс, не совпадают. Неуравновешенность роторов подразделяют на следующие три вида.

    Статическая неуравновешенность - это неуравновешенность, при которой ось ротора и его главная центральная ось инерции параллельны (см. рис.1).

    Рис.1

    Моментная неуравновешенность - это неуравновешенность, при которой ось ротора и его главная центральная ось инерции пересекаются в центре масс ротора (см. рис.2).

    Рис.2

    Динамическая неуравновешенность - это неуравновешенность, при которой ось ротора и его главная центральная ось инерции пересекаются не в центре масс или перекрещиваются (см. рис.3). Она состоит из статической и моментной неуравновешенности.

    Примечание: Здесь и далее выделены курсивом термины и определения, установленные ГОСТом 19534 – 74. Балансировка вращающихся тел. Термины.

    Рис.3


    Частным случаем динамической неуравновешенности является квазистатическая неуравновешенность, при которой ось ротора и его главная центральная ось пересекаются не в центре масс ротора.

    Вызываемая неуравновешенностью центробежная сила определяется по формуле:

    Fцн = P/g w 2 r = P/g (?n/30) 2 r, (1)
    где w = 2?f = ?n/30– угловая скорость,
    f – число оборотов ротора в секунду,
    n – число оборотов в минуту,
    P – вес ротора, q = 9,81м/сек2 – ускорение свободного падения,
    r – радиус неуравновешенной массы или модуль эксцентриситета.

    На высоких оборотах неуравновешенные массы могут развить центробежные силы до недопустимых значений, которые приведут к разрушению машины. Для большинства машин достижение неуравновешенной центробежной силой значения ок. 30% веса ротора является предельно допустимой величиной.

    Произведение неуравновешенной массы на её эксцентриситет называют дисбалансом. Дисбаланс - величина векторная. Чаще используется термин "значение дисбаланса", которое равно произведению неуравновешенной массы на модуль её эксцентриситета.

    Дисбалансы роторов в процессе эксплуатации могут быть вызваны износом рабочих частей, изменением посадки дисков, ослаблением крепления элементов входящих в состав роторов, деформацией и другими факторами, приводящими к смещению масс относительно оси вращения.

    Значение дисбаланса обычно указывается в гмм, гсм. 1гсм = 10гмм.

    Иногда для задания допуска используют отношение значения дисбаланса к массе ротора, называемое удельным дисбалансом . Удельный дисбаланс соответствует эксцентриситету центра массы ротора.
    е ст = D/m (2)

    Дисбалансы устраняются балансировкой. Балансировка - это процесс определения значений и углов дисбалансов ротора, и уменьшения их корректировкой масс. На практике получили распространение два вида балансировки: статическая и динамическая.


    2. Балансировка. Общие сведения

    Статическая балансировка, как правило, проводится в одной плоскости коррекции и применяется, главным образом, к дисковым роторам. Её можно использовать, если отношение длины ротора к его диаметру не превышает 0,25. Плоскостью коррекции называют плоскость, перпендикулярную оси ротора, в которой расположен центр корректирующей массы (массы, используемой для уменьшения дисбалансов ротора).

    При статической балансировке определяется и уменьшается главный вектор дисбалансов ротора, характеризующий его статическую неуравновешенность. Главный вектор дисбалансов равен сумме всех векторов дисбалансов, расположенных в различных плоскостях, перпендикулярных оси ротора (см. рис. 4).

    Рис.4



    Для роторов, у которых их длины соизмеримы с диаметрами или превосходят их, статическая балансировка неэффективна, а в некоторых случаях может оказаться вредной. Например, если плоскость коррекции окажется на значительном расстоянии от главного вектора дисбалансов, то, уменьшив статическую неуравновешенность, можно увеличить моментную неуравновешенность.

    Динамическая балансировка - это такая балансировка, при которой определяются и уменьшаются дисбалансы ротора, характеризующие его динамическую неуравновешенность (см. рис.4). При динамической балансировке уменьшаются как моментная, так и статическая неуравновешенность ротора одновременно.

    Есть много методов балансировки. Все они основаны на предположении линейности системы, то есть амплитуды колебаний считаются пропорциональными значению дисбаланса, а фазы независимы от его величины. Существует одноплоскостная и многоплоскостная балансировка. При одноплоскостной балансировке расчёт корректирующих масс производится последовательно для каждой плоскости коррекции, при многоплоскостной - одновременно.

    Многоплоскостная балансировка с использованием метода одновременного измерения амплитуд и фаз колебаний наиболее распространена при балансировке роторов агрегатов типа ГТК 10-4. Точнее, наиболее распространена двухплоскостная балансировка, которая является частным случаем многоплоскостной. Для расчёта корректирующих масс при таком методе балансировки необходимо выполнить, как минимум, три пуска: один начальный (нулевой) и два пробных с единичными (пробными) массами m п1 , m п2 , установленными на расстояниях r п1 , r п2 от оси вращения (см. рис.5). Порядок и комбинации установок пробных грузов могут быть различными.

    Рис.5.


    При использовании этого метода балансировки считают, что система позволяет использовать принцип суперпозиции. Расчёт корректирующих масс и мест их установки в такой системе может производиться различными способами: графическим, аналитическим или графоаналитическим.

    Графические и графоаналитические расчёты с построением достаточно сложных векторных диаграмм широко использовались до появления балансировочных средств с микропроцессорами. Приёмы выполнения таких расчётов можно найти в литературе . В настоящее время они практически не используются, так как современная техника обеспечивает решение таких задач проще, точнее и быстрее.

    Современная микропроцессорная техника с помощью программных средств решает задачу расчёта чаще всего аналитически. Рассмотрим, в чём заключается суть решения этой задачи.

    Колебания системы ротор - опорная конструкция могут быть описаны системой уравнений (при каждом пуске двумя уравнениями с шестью неизвестными).


    А0 = ? а1 D I +? а2 D II

    В0 = ? в1 D I + ? в2 D II
    А1 = ? а1 (D I +r п1 m п1 ) + ? а2 DII
    В1 = ? в1 (D I +r п1 m п1 ) + ? в2 D II (5)
    А2 = ? а1 D I + ? а2 (D II +r п2 m п2 )
    В2 = ? в1 D I + ? в2 (D II +r п2 m п2 )

    Где, А 0 ,А 1 ,А 2 , В 0 ,В 1 ,В 2 – амплитуды колебаний опор "а", "в" при нулевом и пробных пусках, произведённых на одной частоте.
    ? а1 , ? а2 , ? в1 , ? в2 – коэффициенты влияния, представляющие векторы колебаний опор "а" и "в", вызванных единичными массами mп1, mп2.
    D I , D II – исходные дисбалансы в выбранных плоскостях коррекции І и ІІ.
    r п1 m п1 , r п2 m п2 – внесённые дисбалансы за счёт установки единичных (пробных) масс, в плоскостях коррекции І и ІІ.

    В этих уравнениях неизвестны шесть векторных величин: D I , D II , ? а1 , ? а2 , ? в2 , ? в2 . Чтобы найти их, необходимо решить систему этих уравнений. Определение коэффициентов влияния и корректирующих масс для компенсации исходных дисбалансов является достаточно сложной задачей. Однако решение такой задачи с помощью современных средств, осуществляется автоматически в процессе пусков. Определённые из уравнений (5) коэффициенты влияния можно использовать для расчёта корректирующих масс при балансировке последующих однотипных роторов без выполнения двух пробных пусков.

    В тех случаях, когда число плоскостей коррекции большее, чем 2 (например, если производится балансировка одного ротора с опорами более, чем 2-е или балансировка сцепленных роторов), количество пробных пусков определяется числом плоскостей коррекции, в каждую из которых последовательно устанавливаются пробные массы. Уравнения, описывающие колебания системы, составляются аналогично, как и при двухплоскостной балансировке. Система этих уравнений и её решение усложняются, так как количество коэффициентов влияния увеличивается за счёт увеличения количества плоскостей коррекции и увеличивается количество уравнений за счёт увеличения количества пусков.

    Чаще всего динамическая балансировка проводится на балансировочных станках. Обычно балансировка на станках проводится на более низких оборотах, чем рабочие обороты роторов. Это обусловлено техническими возможностями балансировочных станков. Высокооборотные балансировочные станки мало распространены из-за их дороговизны и большой энергоёмкости. Балансировка на низкооборотных станках достаточно эффективна и обеспечивает высокую точность в тех случаях, когда ротора относятся к классу жёстких роторов . Для гибких роторо в балансировка на низкооборотных станках не всегда эффективна.

    Жёсткий ротор определяется как ротор, который сбалансирован на частоте вращения, меньшей первой критической в двух произвольных плоскостях коррекции и у которого значения остаточных дисбалансов не будут превышать допустимые на всех частотах вращения вплоть до наибольшей эксплуатационной. Динамическая балансировка жёсткого ротора производится, как правило, в двух плоскостях.

    Гибкий ротор определяется, как ротор, который сбалансирован на частоте вращения, меньшей первой критической в двух произвольных плоскостях коррекции и у которого значения остаточных дисбалансов могут превышать допустимые на иных частотах вращения вплоть до наибольшей эксплуатационной . При балансировке гибких роторов используется, как правило, более двух плоскостей коррекции.


    3. Выбор допуска и точности балансировки

    Из практики известно, что виброскорость является наиболее объективным критерием для оценки вибрации. Исходя из этого, чаще всего оценка и нормирование вибрационного состояния производится по виброскорости. Поэтому допуск на балансировку принято устанавливать таким образом, чтобы в рабочем диапазоне оборотов иметь приемлемую виброскорость. Исходя из этих условий допустимый дисбаланс должен изменяться обратно пропорционально частоте вращения ротора. То есть чем выше рабочая частота вращения, тем меньше должен быть допустимый дисбаланс. Следовательно должна обеспечиваться следующая зависимость:
    е ст w = Конст. , где е – удельный дисбаланс, w – угловая частота.
    При этом предполагается, что ротор и опоры жёсткие. Величину естw приняли определяющей при классификации точности балансировки.

    Классы точности балансировки жёстких роторов установлены ГОСТом 22061-76 в соответствии с международным стандартом ИСО 1949.

    Согласно этой классификации каждый класс характеризуется постоянной величиной е ст w. Каждый последующий класс отличается от предыдущего в 2,5 раза. ГОСТ 22061-76 устанавливает 13 классов точности; с нулевого по двенадцатый, для различных групп жёстких роторов. Ротора газоперекачивающих агрегатов относятся к 3-ему классу точности. Значения допустимых дисбалансов рассчитываются и задаются разработчиком машин согласно ГОСТу 22061-76.


    4. Особенности балансировки крупногабаритных роторов

    Балансировка крупногабаритных типа ОК ТВД ГТК 10-4 роторов имеет свои особенности, хотя нет нормативных документов, устанавливающих какое - либо разделение роторов в зависимости от их габаритов. При больших длинах (более 4-х метров) и больших массах роторов (весом в несколько тонн) необходимо учитывать влияние термических деформаций на дисбалансы. При таких размерах температура роторов неодинакова в различных точках. Это обусловлено тем, что в производственных помещениях всегда имеются источники теплового излучения и конвекционных потоков. Да и сами балансировочные станки являются таковыми. Длинные ротора особенно чувствительны к малейшему перепаду температуры в радиальном направлении. Проведённые исследования влияния тепловых деформаций роторов (ОК ТВД агрегата ГТК 10-4) на дисбалансы показывают, что перепад температуры в радиальном направлении на 1єС (при длине ротора 4 и более метров) приводит к термическим дисбалансам, в 5-10 раз превышающим допуск. Для исключения ошибок при балансировке из-за тепловых деформаций необходимо обеспечить предварительную термостабилизацию балансируемых роторов. На практике это осуществляется следующим образом. Ротора, поступающие на балансировку, выдерживаются в помещении до выравнивания его температуры с температурой окружающей среды. Затем ротор устанавливается на станок и приводится во вращение. Ротора весом более 5т необходимо выдержать в режиме непрерывного вращения (или в режиме пуск – останов - пуск) в течение не менее 2-х часов и лишь после этого произвести его балансировку. В процессе вращения выравнивается температура в радиальном направлении. Если балансировка по каким - либо причинам была прервана (прекращение вращения около 1 часа и более), то её завершению вновь должна предшествовать операция вращения ротора для выравнивания температуры в радиальном направлении. При перерывах менее 2-х часов время вращения для выравнивания температуры требуется не более времени перерыва.

    Внимание! У Вас нет прав для просмотра скрытого текста.


    Источники информации, принятые во внимание при составлении методического пособия по балансировке роторов.

      ГОСТ 19534 – 74. Балансировка вращающихся тел. Термины.

      ГОСТ 22061 – 76 Система классов точности балансировки и методические указания.

      Руководящие указания по балансировке роторов ГТУ на балансировочном станке и в собственных подшипниках. "Оргэнергогаз" М., 1974год.

      Вибрации в технике. Т.6. Защита от вибрации и ударов. Под ред. чл.-кор. АН СССР К.В. Фролова. М. "Машиностроение", 1981г.

      Сидоренко М.К. Виброметрия газотурбинных двигателей.

      После сборки вращающейся сборочной единицы, в которую входят сбалансированные детали (например: валы, насадные шестерни, муфты и др.) и другие детали (шпонки, штифты, стопорные винты и др.), возникает необходимость в повторной их балансировке, так как смещение одной из деталей, даже в пределах зазоров, предусмотренных чертежом, вызывает значительную неуравновешенность.

      Несовпадение центра тяжести детали с осью вращения принято называть статической неуравновешенностью, а неравенство нулю центробежных моментов инерции – динамической неуравновешенностью.

      Статическая неуравновешенность легко обнаруживается при установке детали опорными шейками или на оправках на горизонтальные параллели (ножи, призмы, валики) или ролики, а динамическая – лишь при вращении детали. В связи с этим балансировка бывает статическая и динамическая.

      Статическая балансировка. Существует несколько методов выполнения статической балансировки. Наиболее часто встречаются в станкостроении балансировки на призмах и на дисках. Ножи, призмы и ролики должны быть калеными и шлифованными и перед балансировкой выверены на горизонтальность.

      При балансировке на горизонтальных параллелях (рис. 1) допускаемые овальность и конусность шеек оправки не должны превышать 0,01-0,015 мм, а диаметры их должны быть одинаковыми.

      Рис. 1. а – на горизонтальных параллелях (1 – центр тяжести детали; 2 – корректирующий груз); б – на дисках (1 – деталь; 2 – корректирующий груз)

      Для уменьшения коэффициента трения параллели и шейки оправки рекомендуется подвергать закалке и тщательно шлифовать. Рабочую длину параллелей можно определять по формуле:

      где d – диаметр шейки оправки.

      Ширина рабочей поверхности параллелей (ленточки) равна (см):

      где G – усилие, действующее на параллель, в кГ; Е – модуль упругости материала оправки и параллелей, в кГ/см 2 ; σ – допускаемое сжимающее напряжение в местах контакта шейки и параллели, в кГ/см 2 (для закаленных поверхностей σ=2 10 4 ÷ 3 10 4 кГ/см 2).

      Величина d в см назначается из конструктивных соображений с учетом удобства установки балансируемой детали на оправку.

      Дисбаланс определяется пробным прикреплением корректирующих грузов на поверхности балансируемой детали. Устраняется дисбаланс удалением эквивалентного количества материала с диаметрально противоположной стороны или установкой и закреплением соответствующих противовесов (корректирующих грузов).

      Статическая балансировка шкива может быть выполнена следующим образом. На ободе шкива предварительно наносят мелом черту и сообщают ему вращение. Вращение шкива повторяют 3-4 раза. Если меловая черта будет останавливаться в разных положениях, то это будет указывать на то, что шкив сбалансирован правильно. Если меловая черта каждый раз будет останавливаться в одном положении, то это значит, что часть шкива, находящаяся внизу, тяжелее противоположной. Чтобы устранить это, уменьшают массу тяжелой части высверливанием отверстий или увеличивают массу противоположной части обода шкива, высверлив отверстия, а затем заливают их свинцом.

      Чувствительность балансировки деталей весом до 10 т на горизонтальных параллелях (рис. 1, а):

      где F – чувствительность метода в Г см; f – коэффициент трения качения (f=0,001 ÷ 0,005 см); G – вес детали или сборочной единицы в кг.

      Чувствительность балансировки деталей весом до 10 т на дисках (рис. 1, б):

      где F – чувствительность метода в Г см; f – коэффициент трения качения (f=0,001 ÷ 0,005 см); G – вес детали или сборочной единицы в кг;  – коэффициент трения качения в подшипниках дисков; r – радиус цапфы дисков в см; d – диаметр оправки в см; D – диаметр дисков в см; α – угол между осью оправки и осями дисков.

      Точность балансировки на дисках больше, чем на горизонтальных призмах. Статическую балансировку чаще всего применяют для деталей типа дисков.

      Балансировка деталей и сборочных единиц может быть выполнена на балансировочных весах в резонансном режиме колеблющейся системы, которая позволяет повысить точность балансировки.

      Балансировку деталей весом до 100 кг на балансировочных весах выполняют следующим образом (рис. 2): испытываемую конструкцию 1 уравновешивают грузами 3 и разгоняют вращающуюся часть 1 конструкции до частоты вращения, превышающей частоту колебаний системы. После разгона электродвигатель отсоединяют от испытываемой конструкции, подвижная часть которой продолжает свободно вращаться, постепенно снижая скорость. Это исключает влияние возмущений от двигателя привода на колеблющуюся систему. Амплитуда смещения контрольной точки измеряют прибором 2 в момент совпадения частоты вращения шпинделя с собственной частотой колеблющейся системы, т. е. при резонансе, где амплитуда достигает наибольшего значения. Величина остаточной неуравновешенности при данном методе измерения не должна превышать 1,5-2 Г см.

      Рис. 2.

      По ряду изделий в настоящее время на основании опыта уже установились нормы допустимого смещения центра тяжести вращающихся деталей (табл. 1).

      Таблица 1. Допустимая величина смещения центра тяжести

      Группа деталей Наименование Смещение центра

      тяжести, мкм

      Группа деталей Наименование Смещение центра

      тяжести, мкм

      А Круги, роторы, валы и шкивы точных

      шлифовальных станков

      0,2-1,0 В Жесткие небольшие роторы

      электродвигателей, генераторы

      2-10
      Б Высокооборотные электродвигатели,

      приводы шлифовальных станков

      0,5-2,5 Г Нормальные электродвигатели, вентиляторы,

      детали машин и станков, быстроходные приводы и т. д.

      5-25

      Чувствительность балансировки деталей весом до 100 кг на балансировочных весах (рис. 2): F=20 ÷ 30 Г см.

      Величина дисбаланса:

      где ω – разность показаний прибора 2.

      Динамическая балансировка деталей и сборочных единиц применяется для более точного определения дисбаланса, возникающего при вращении под действием центробежных сил. Для проведения динамической балансировки деталей и комплектов типа тел вращения применяют балансировочные станки.

      Детали и комплекты типа муфт, зубчатых колес, шкивов балансируют на оправках. Оправку с деталью или сборочной единицей для балансировки устанавливают на балансировочном станке и соединяют со шпинделем станка.

      Величина дисбаланса и место его расположения определяются приборами, установленными на станке. Дисбаланс устраняют обычно сверлением отверстия в детали или направлением металла на противоположной от места дисбаланса стороне детали.

      Требуемая техническими условиями точность балансировки зависит от конструкции и назначения деталей и узлов, скорости их вращения, допустимых вибраций машины, необходимой долговечности опор.

      Статическая балансировка может уравновешивать деталь относительно ее оси вращения, но не может устранить действие сил, стремящихся повернуть деталь вдоль продольной ее оси.

      Динамическая балансировка устраняет оба вида неуравновешенности. Динамической балансировке подвергают быстроходные детали со значительным отношением длины к диаметру (роторы турбин, генераторов, электродвигателей, быстровращающиеся шпиндели станков, коленчатые валы автомобильных и авиационных двигателей и т. д.).

      Динамическую балансировку производят на специальных станках высококвалифицированные рабочие. При динамической балансировке определяют величину и положение массы, которые нужно приложить к детали или отнять от нее, чтобы деталь оказалась уравновешенной статически и динамически.

      Центробежные силы и моменты инерции, вызванные вращением неуравновешенной детали, создают колебательные движения из-за упругой податливости опор. Причем колебания их пропорциональны величине неуравновешенных центробежных сил, действующих на опоры. На этом принципе основана балансировка деталей и сборочных единиц машин.

      Динамическая балансировка, выполняемая на современных автоматизированных балансировочных станках, в интервале 1-2 мин выдает данные: глубину и диаметр сверления, массу грузов, размеры контргрузов и места, где необходимо закрепить и снять грузы, а также амплитуду колебаний опор.

      Динамической балансировке подвергаются детали и узлы длиной больше диаметра (коленчатые валы, шпиндели, роторы лопаточных машин и т. п.). Динамическая неуравновешенность, возникающая при вращении детали вследствие образования пары центробежных сил Р (рис. 3, а), может быть устранена приложением корректирующего момента от сил Р 1. Выбор плоскостей коррекции определяется конструкцией детали и удобством удаления излишков металла. Наиболее общий случай неуравновешенности детали, встречающийся на практике, показан на рис. 3, б.

      Рис. 3. Принципиальная схема динамической балансировки деталей: а – динамическая неуравновешенность детали; Р – центробежные силы от неуравновешенных масс m, расположенных на плече r; Pt – центробежные силы от корректирующих грузов; б – статическая и динамическая неуравновешенность детали; Р’ – центробежная сила от массы m’, раскладываемая на силы Р и Р”, вызывающие статическую неуравновешенность

      Выявление неуравновешенности производится на балансировочных машинах. В условиях индивидуального производства динамическую балансировку выполняют при помощи простых средств, к числу которых можно отнести, например, устройство для установки опор уравновешиваемой детали на упругие балки или на упругие (резиновые) подкладки.

      Деталь приводят во вращение до скорости, превышающей условия резонанса.

      Отключают привод (например, сбросом ремня) и замеряют амплитуду максимальных колебаний одной из опор. Прикреплением пробного груза к детали добиваются прекращения колебания этой опоры. Аналогичную процедуру выполняют в отношении другой опоры. Балансировка заканчивается по прекращении колебаний опор.

      с упругими опорами, применяемой для деталей и узлов весом до 100 т (роторы мощных турбин) – на рис. 4.

      Рис. 4. 1 – балансируемый объект; 2 – электромагнитная муфта; 3 – электродвигатель; 4 – подшипники; 5 – поддерживающие упругие стойки (рессоры); 6 – упоры, поочередно запирающие подшипники; 7 – механический рычажный индикатор для определения плоскости дисбаланса по меткам 8, вычерчиваемым острием индикатора на окрашенной колеблющейся шейке объекта; 9 – компенсирующие пробные грузы, прикрепляемые к объекту

      Балансировку ведут при поочередном закреплении опор. Угловое положение дисбаланса находят при помощи механических или электрических индикаторов. Величина дисбаланса в выбранных плоскостях коррекции определяется прикреплением пробных компенсирующих грузов. Чувствительность зависит от веса и размеров объекта.

      Балансировка на машинах рамного типа с регулируемыми компенсаторами дисбаланса применяется преимущественно для деталей и сборок малых и средних размеров весом до 100 кг.

      Уравновешивание дисбаланса осуществляется вручную и механически.

      На рис. 5 приведена схема балансировочной машины с ручным перемещением компенсирующего груза 3 на шпинделе станка.

      Рис. 5. 1 – рама; 2 – балансируемая деталь, сборка; 3 – компенсатор дисбаланса

      Груз 3 перемещают в радиальном и окружном направлениях и вручную корректируют его вес. Так определяют эквивалентное количество материала для удаления с детали. Дисбаланс определяют только в плоскости коррекции 1–1. Поэтому для определения дисбаланса детали в другой плоскости 2–2 необходимо ее переустановить с поворотом на 180° для определения величины и местоположения компенсатора в этой плоскости. Машина требует предварительной настройки по эталонной детали; колебания рамы вокруг горизонтальной оси отмечаются механическим измерителем амплитуды; величина неуравновешенных моментов в выбранных плоскостях коррекции определяется с точностью 10 -15 Г см 2 .

      Отремонтированный агрегат считается уравновешенным, если при его работе равнодействующая всех сил, действующих на опоры агрегата, остается постоянной по величине и направлению.

      Динамические нагрузки на опоры работающего агрегата обусловлены силами инерции деталей, которые движутся поступательно или вращаются. Агрегат будет уравновешенным в том случае, если он собран из одноименных деталей, движущихся поступательно, одинаковой массы и вращающихся деталей, прошедших балансировку.

      Движущиеся детали изменяют свою массу или становятся при эксплуатации неуравновешенными в результате накопления загрязнений на их поверхностях, неравномерного изнашивания и деформирования. Это приводит к дополнительным нагрузкам в кинематических парах и накоплению усталостных повреждений в шейках валов, что в свою очередь снижает долговечность агрегатов.

      Детали балансируют во время их восстановления (коленчатые валы, маховики и др.), а сборочные единицы (сцепления, коленчатые валы в сборе с маховиками и сцеплениями и др.) - после узловой сборки.

      Балансировка - это уравновешивание сил инерции частей вращающегося изделия совмещением его центра масс, осей инерции и вращения путем снятия лишнего металла или установки противовесов.

      При балансировке вращающихся изделий добиваются, чтобы нагрузки на их опоры от сил инерции были равны нулю. Вращающееся изделие полностью уравновешено при условиях

      где М - масса изделия, г; r s - расстояние от центра масс изделия до его оси вращения, см; J { - центробежный момент инерции изделия, г-см 2 ; m jy г - и l j - масса (г) элемента изделия, расстояние (см) от центра его масс до оси вращения изделия и плечо (см) действия силы инерции элемента относительно оси, проходящей через центр масс изделия, соответственно; i = = 1... к - число элементов изделия.

      Считают, что изделие уравновешено статически, если выполняется первое условие, и уравновешено динамически, если выполняется второе условие. В реальных условиях различают статическую, динамическую и смешанную неуравновешенность вращающихся деталей или сборочных единиц.

      Статическая неуравновешенность (рис. 2.57, а) наблюдается у деталей типа дисков с малой длиной (маховиков, нажимных и ведомых дисков сцеплений, чугунных шкивов и др.), у которых возможна неуравновешенная сила инерции. Мерой статической неуравновешенности служит дисбаланс, направление которого совпадает с неуравновешенной силой инерции, а значение равно произведению Mr s (г-см). Способы статической балансировки состоят в совмещении центра масс детали с осью ее вращения путем снятия излишнего металла или установки противовеса. При этом определяют направление дисбаланса, затем на этом направлении на


      Рис. 2.57. а - статическая; б - динамическая; в - смешанная

      поверхности изделия снимают излишний металл по одну сторону с неуравновешенной массой от оси вращения или добавляют металл, если неуравновешенная масса находится по другую сторону от оси вращения детали. Массу т (г) снимаемого (добавляемого) металла определяют по формуле

      где R - расстояние от оси вращения до центра массы снимаемого (добавляемого) металла, см.

      Поверхность, с которой снимают металл или закрепляют противовес, должна быть наибольшего радиуса, поскольку в этом случае масса снимаемого (добавляемого) материала минимальная.

      Балансировку ведут на роликах, горизонтальных призмах, качающихся дисках и на станках.

      Устройства для статической балансировки деталей на роликах и горизонтальных призмах приведены на рис. 2.58, а, б. Деталь 1 устанавливают без зазора на оправку 2, которую в свою очередь устанавливают на ролики или призмы. Неуравновешенная деталь под действием силы тяжести провернется вокруг своей оси, при этом ее «тяжелая» часть окажется внизу. Балансировка на призмах дает более точные результаты, однако в этом случае требуется, чтобы их рабочие поверхности располагались горизонтально. Эти устройства показывают только направления дисбаланса, определение его значения затруднено и требует практического навыка.


      Рис. 2.58. а - на роликах: 1 - деталь; 2 - оправка; 3 - ролики; б- на призмах: 1 - деталь; 2 - оправка; 3 - призмы; в - на качающемся диске: 1 - стрелка; 2 - деталь; 3 - острие; 4 - опора

      Устройство для статической балансировки деталей на качающемся диске (рис. 2.58, в) лишено приведенного недостатка. Его статически отбалансированный диск имеет опоры (цилиндрическую поверхность и плоскость) для балансируемой детали. Соосно цилиндрической поверхности установлено острие 3, которое соприкасается с ответным коническим углублением опоры 4. Две стрелки 1 диска расположены во взаимно перпендикулярных направлениях. Деталь устанавливают на диск и ориентируют центрирующим пояском. Если диск с деталью под действием силы тяжести наклонились, то их приводят в горизонтальное положение путем перемещения по поверхности детали компенсирующего груза. Место нахождения груза и его масса показывают направление и величину дисбаланса.

      Статическую балансировку изделий (маховиков, нажимных и ведомых дисков сцеплений, сцеплений в сборе и др.) в динамическом режиме (при их принудительном вращении) выполняют на станке модели 9765. Этот вид балансировки более точный, чем ранее рассмотренные.

      Динамическая б) у статически уравновешенного изделия (центр масс находится на оси вращения) возникает в том случае, если имеются две неуравновешенные массы т, которые расположены по разные стороны от оси вращения на расстоянии г. Во время вращения изделия возникает момент S от двух равных сил инерции Р на плече /. Момент S вызывает переменные по направлению нагрузки на опоры изделия при его вращении. Динамическую неуравновешенность устраняют снятием или добавлением двух равных масс в плоскости действия момента S, чтобы появился новый момент, уравновешивающий начальный. Этот вид неуравновешенности выявляют при принудительном вращении изделия. Динамическая неуравновешенность измеряется в ньютон-квадратный метр (Н м 2).

      Смешанная неуравновешенность (см. рис. 2.57, в) наиболее часто встречается в реальных условиях, когда имеются неуравновешенные сила инерции и момент от двух равных сил инерции. Этот вид неуравновешенности характерен для длинных деталей или сборочных единиц типа валов (Н м).

      Система любого числа неуравновешенных сил инерции сводится к двум силам, которые расположены в двух произвольно выбранных перпендикулярно оси детали плоскостях, удобных для уравновешивания. Такие плоскости называют плоскостями коррекции. Например, у коленчатого вала эти плоскости проходят через крайние противовесы.

      Пусть имеется ряд сил, в том числе Р 1 и Р 2 от неуравновешенных масс и т 2 - Заменим центробежные силы Р х и Р 2 их составляющими Р и Р" и Р" 2 и Р 2 в плоскостях коррекции, расположенных друг от друга на расстоянии /. Сложим эти составляющие в каждой плоскости по правилу параллелограмма и получим равнодействующие и Т 2 . В точке приложения силы Т { приложим две равные между собой, но противоположно направленные силы Т 2 . В результате получаем две неуравновешенные силы Т 2 и Q в плоскостях коррекции. Сила Q является векторной суммой сил Т { и Т 2 . Момент Т 2 1 определяет динамическую неуравновешенность, а сила Q - статическую. Полное уравновешивание изделия достигается установкой противовесов т ъ и т 4 в плоскостях коррекции на линиях действия сил Т 2 и Ту

      Направление (угол) и значение дисбаланса в каждой плоскости коррекции вала определяют на балансировочных станках моделей, например, БМ-4У, КИ-4274, МС-9716 или фирмы Schenk (Германия). На станках балансируют сборочные единицы (коленчатые валы с маховиками, карданные валы и др.), вращающиеся при работе агрегата в двух и более опорах.

      Принцип действия балансировочного станка (рис. 2.59) заключается в следующем. Изделие устанавливают на упругие опоры (люльки) 1 и приводят во вращение с частотой 720... 1100 мин -1 от электродвигателя 6. Под действием центробежных сил инерции опоры с изделием будут колебаться вдоль горизонтальной оси. С перемещающимися опорами заодно движутся и обмотки датчиков перемещений 2, находящиеся

      Рис. 2.59.

      1 - опоры (люльки); 2 - датчик перемещений; 3 - блок усиления; 4 - миллиамперметр; 5 - лампа стробоскопа; 6 - электродвигатель; 7 - лимб стробоскопа; 8 - маховик

      в магнитном поле постоянных магнитов. В каждой обмотке наводится ЭДС, значение которой пропорционально амплитуде колебаний. Сигнал от датчика поступает в блок усиления 3 и в измененном виде фиксируется миллиамперметром 4, шкала которого составлена в единицах дисбаланса (г см). Сигнал об угле поворота шпинделя, при котором опора переместилась на максимальное расстояние, поступает на малоинерционную лампу 5 стробоскопа, вспышка которой освещает небольшой участок обода вращающегося лимба 7 с угловыми делениями от 0 до 360°. Рабочий воспринимает лимб остановленным с неподвижными цифрами. Значение и направление дисбаланса изделия поочередно определяют на каждой из двух опор станка.

      После каждого определения направления и значения дисбаланса останавливают станок. При отключенном электродвигателе люльки запираются электромагнитами. Затем вращением изделия рукой за маховик 8 устанавливают его в нужное угловое положение. С помощью радиально-сверлильного станка или электрической дрели высверливают лишний металл необходимой массы в плоскости коррекции. Длина сверления пропорциональна показаниям миллиамперметра.